Analysis of SVM with Indefinite Kernels
نویسندگان
چکیده
The recent introduction of indefinite SVM by Luss and d’Aspremont [15] has effectively demonstrated SVM classification with a non-positive semi-definite kernel (indefinite kernel). This paper studies the properties of the objective function introduced there. In particular, we show that the objective function is continuously differentiable and its gradient can be explicitly computed. Indeed, we further show that its gradient is Lipschitz continuous. The main idea behind our analysis is that the objective function is smoothed by the penalty term, in its saddle (min-max) representation, measuring the distance between the indefinite kernel matrix and the proxy positive semi-definite one. Our elementary result greatly facilitates the application of gradient-based algorithms. Based on our analysis, we further develop Nesterov’s smooth optimization approach [17, 18] for indefinite SVM which has an optimal convergence rate for smooth problems. Experiments on various benchmark datasets validate our analysis and demonstrate the efficiency of our proposed algorithms.
منابع مشابه
Support vector machines with indefinite kernels
Training support vector machines (SVM) with indefinite kernels has recently attracted attention in the machine learning community. This is partly due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the Mercer condition is not satisfied, or the Mercer condition is difficult to verify. Previous work on training SVM with indefinite ke...
متن کاملLearning SVM Classifiers with Indefinite Kernels
Recently, training support vector machines with indefinite kernels has attracted great attention in the machine learning community. In this paper, we tackle this problem by formulating a joint optimization model over SVM classifications and kernel principal component analysis. We first reformulate the kernel principal component analysis as a general kernel transformation framework, and then inc...
متن کاملNon Positive SVM
Learning SVM with non positive kernels is is a problem that has been addressed in the last years but it is not really solved : indeed, either the kernel is corrected (as a pre-treatment or via a modified learning scheme), either it is used with some wellchosen parameters that lead to almost positive-definite kernels. In this work, we aim at solving the actual problem induced by non positive ker...
متن کاملSVM in Krĕın spaces
Support vector machines (SVM) and kernel methods have been highly successful in many application areas. However, the requirement that the kernel is symmetric positive semidefinite, Mercer’s condition, is not always verified in practice. When it is not, the kernel is called indefinite. Various heuristics and specialized methods have been proposed to address indefinite kernels, from simple tricks...
متن کاملSubspace Learning in Krein Spaces: Complete Kernel Fisher Discriminant Analysis with Indefinite Kernels
Positive definite kernels, such as Gaussian Radial Basis Functions (GRBF), have been widely used in computer vision for designing feature extraction and classification algorithms. In many cases nonpositive definite (npd) kernels and non metric similarity/dissimilarity measures naturally arise (e.g., Hausdorff distance, Kullback Leibler Divergences and Compact Support (CS) Kernels). Hence, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009